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ON A UNIT GROUP GENERATED BY SPECIAL VALUES 
OF SIEGEL MODULAR FUNCTIONS 

T. FUKUDA AND K. KOMATSU 

ABSTRACT. There has been important progress in constructing units and S- 
units associated to curves of genus 2 or 3. These approaches are based mainly 
on the consideration of properties of Jacobian varieties associated to hyper- 
elliptic curves of genus 2 or 3. In this paper, we construct a unit group 
of the ray class field k6 of Q(exp(27ri/5)) modulo 6 with full rank by spe- 
cial values of Siegel modular functions and circular units. We note that 
k6 = Q(exp(27ri/15), =/Z2). Our construction of units is number theoretic, 
and closely based on Shimura's work describing explicitly the Galois actions 
on the special values of theta functions. 

1. THEOREM 

We begin by explaining the notation. We denote as usual by 2, Q, R and C 
the ring of rational integers and the fields of rational numbers, real numbers and 
complex numbers, respectively. For a positive integer n, n, Qfn, etc. denote the 
module or vector space of n-dimensional column vectors with components in 2, Q, 
etc. If Y is an associative ring with identity elernent, then yx denotes the group 
of all invertible elements of Y, and Mn (Y) the ring of all matrices of degree n 
with components in Y; the identity element of Afn(Y) is denoted by In. We write 
GLn(Y) = Mn(Y) X The transpose of a matrix a is denoted by 'a. For elements 
91g, X , 9r of a group G, we denote by (91, g , 9r) the subgroup of G generated 
byg1,... ,-9r 

For a finite algebraic extension K of k, we denote by [K: k] the degree of K 
over k, and if K is a Galois extension of k, we denote by G(K/k) the Galois group 
of K over k. 

Let 62 be the set of all complex symmetric matrices of degree 2 with positive 
definite imaginary parts. For u e C2, z e 62 and r, s e 1R2, put as usual 

e(u, z; r, s) = e(t(x + r)z(x + r) + t(x + r)(u + s)), 
xC2 xE7Z2 

where e(() = exp(2iri() for ( e C. Moreover we put 

2(0, z; r, s) 

for r1,s1 E112R 
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Let F1 = Sp(2)= { a e GL4(ZZ) I taJa = J }, where 

(0 0 -1 O\ 
0 0 0 -1 

J= 10 0 01 
0 1 0 0/ 

For every positive integer N, we put FN = { a F1 I a = 14 (mod NM4(Z)) }. We 
let every element a = (A B ) act on 62 by a(z) = (Az + B)(Cz + D)-1 for z E 62- 

Let v be a non-zero integer and a a matrix in M4(Z) with taJa = vJ. We 
suppose that the determinant of a is v2 and that v is prime to 2N. Then it is well 
known that there exists a matrix /3 in F1 with 

a (%O v12) (mod 2N2). 

Let r,s,r1,s1 e p22. Then 1(z; r, s; r1,sl) is a Siegel modular function of level 
2N2 (cf. [5], Proposition 1.7). We let a act on 1(z; r, s; ri, si) by 

I(z; r,s; rl,sl) = 1(/3(z); r,vs; rl,vsl). 

We note that <'1 is also a Siegel modular function of level 2N2. 
Now, we put (S, = exp(27ri/n) for a positive integer n and k = (2). In what 

follows, we concentrate our attention on the case n = 5. So we write for simplicity 
( = (5. Let Dk be the integer ring of k and a the element of the Galois group 
G(k/Q) defined by ( = (2. For the 2-dimensional complex vector space C2, we 
put L= {Q() e ?2 e Ok }. Then L is a lattice in?2. We put = )/5 
and define a Riemann form E on the complex torus C2/L as follows: 

E (Q'l9, ( -)) - l(u1 -u1vl) + a?(u2v2 -U2v2) 

for ui, vi e C. Moreover, for w1 (i), W2 = (s), 3 = ((4+) and 4 = 

we can easily see that {w1, w2, w3, w4 } is a free basis of L over Z and 

(E(ujijj))i,j=1,2,3,4 = J. Hence we see that 

ZO (24 
4 (3 71 ( (4) 

o=t(4 + (3 _( V ,2 (3 

2 K ( - (3 - 24 2 _(+(2 -2(3A 

5 2 _ (+?2 - 2(3 ++2(2 - 2(3 - (4 

is a CM-point of 62 corresponding to the polarized abelian variety (C2/L, E). 
Now, let u be an element of Dk* We denote by 

( all a12 a13 a14 

R() a21 a22 a23 a241 

a31 a32 a33 a34 

a41 a42 a43 a44 

the regular representation of u with respect to 4j = -4, 2 = , =2 + (4, 

-4 = (3. Namely, 
4 

fi= E aijjj with aij e 2. 

j=1 
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Then there exists an integer v with tR(wwa3)JR(wwa 3) = vJ, det R(ww' ) = v2 

and R(WWO3 )zO = zo (cf. [5, p. 684]). Now we define an endomorphism 0p of kX by 
p(a) = a1+u3 for a e kx. We have 

3 0 -1 1' 

R(Qp(( + 2)) = R((( + 2)(( + 2) 73) 
2 2 0 -1 

<-2 1 1 4, 

The main purpose of this paper is to prove the following theorem: 

Theorem. Let k = Q(exp(27ri/5)), and let k6 be the ray class field of k modulo 6. 
We put 

bRf(+( )(z; (o)t (o0); (o0)t (o0)) 

bDR(W (2+()-+2 ) (Z; ( (?;()3 ? 

and 

DR(W(2+() 2) (zo; (3 30 '0? bR(f 
(2+()>+2)(2) (3) (03); (O0) (0)) 

for all v e Z. Moreover we put P0 = 1- 15, P1 = 1 (75 and P2 = 1 - c11. Then 
the subgroup (E0, , 67, ,, , 7 Po, P1, P2) of k is a unit group of k6 of free 
rank 19. 

2. PROOF OF THE THEOREM 

Let m be a positive integer. We put Sm = { a e kx I a- 1 (mod m) } and 
Sm = { (a) I a E Sm }, where (a) is the principal ideal of k generated by a. Let U 
be the unit group of k and km the ray class field of k modulo m. Then we have 

G(k18/k6) 6/S11 S6U/S18U S6/S18(S6 n u) 

by class field theory. We put1 = 1 + 6 = 1 + 6(-( _ -2- _-(4),w2 = 

1 + 6(( - (4) w3 = 1 + 6(2 - (3) w4 = 1 + 6(( _ 2 _ (3 + (4) = 1 + 2V and 
H = S18(s6 n u). Since { (, (3, (4 } is a free basis of Ok over Z and S6/S18 is 
mapped isomorphicaly to Ok/30k by the mapping S6/S18 3 (1 + 6w)S18 - w ?) 
30k e Ok/30k, we have S6/S18 - (Z/32) and S6/S18 = ((1?64)S18 (1?642)S18) 
(1+6(3)S18, (1+6(4)S18). Hence we have S6/S18 = (WlS18, W2S18, w)3S18, W4S18), 
because 

det 
I 0 0 -1 -8 

1 -1 -1 1, 

and (8,3) = 1, which shows that S6/H = (uwH, W2H, w3H, w4H) as H D Si8- We 
put 01 = 1+4-3, 02= 1+6(( _ (2?+(3_-,4)) 03 =1+6( + (2 - (3-_,4) and 0= 1, 
so that we have ,v(wj)H = OiH for i = 1, 2,3,4. Since p(H) C H, we can define an 
endomorphism (p of S6/H by p(aH) = p(a)H. By a standard argument in linear 
algebra, we see that p(S6/H) = (01H, 02H, 03H) - (Z/32)3. Thus for the class 
field K of k corresponding to the kernel of (p, we have G(K/k6) -(Z/32)3. 
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Let N be a positive integer, w an integer of k which is prime to 2N, and 
r,s,r1,sl E 12. Then we have 

4?(zo; r,s; ri,si) e k2N2 

and 

(l) (DZo; r, s; ri, Sj)(k /) =<R (W ()) (Zo; r, s; ri, si) 

by Shimura's reciprocity law, where (Lk2/k ) is the image of (w) by Artin mapping 
(cf. [5, Proposition 2.2]). Moreover we have the following by [4, Propositions 1 and 
2]: 

Lemma. If r, s, ri, si e 3 22, then D(zo; r, s; 0, 0) is an algebraic integer of K and 
1(zo; r,s; ri,s1)3 e k6- 

Let M be the subgroup of kX generated by integers of k which are prime to 6. 
We put M = { (a) I a e M }. Then, by class field theory, we have 

G(k6/k) M/S6 6 (M/U)/(S6U/U) _ M/S6U_ (M/S6)/(S6U/S6). 

Since 
MIS6 - (Ok/60k)X (Ok/20k)Xw(Ok/3Dk)x, 

the order of MIS6 is 15 . 80. We put u = (-1 + V'5)/2; then we have S6U/S6 = 

(uS6, (S6). Hence the order of S6U/S6 is 120, because the order of uS6 is 24 and 
the order of (S6 is 5. Hence [k6: k] = 10. Moreover we have ((-1 - 2() + 3Dk) = 

(Ok/30k)x and the order of (3( + 2) + 20k is 5, which shows that the order of 
(( + 2)S6 is 80 because ( + 2 _ 3( + 2 (mod 2) and ( + 2 -1 - 2( (mod 3). 
This shows that M/US6 = ((( + 2)US6), because (( + 2)8 _-4 (mod 3) and 
(( + 2)8 = (3 (mod 2). In a similar way, we see that [k3: k] = 2. 

Now, we suppose r, s e 22. We compute the norm of 4>(zo; r, s; 0, 0)3 from k6 

to Q by using the Lemma, (1), and [5, Proposition 1.3 ]. First, by (1), we have 

r, s; 0, 0)3) = f I (b(zo; r,s; 0, 0)3)( ) 2 

v=1 

10 

= fjJ (4DR(p((+2)v) (Z0; r, s; 0) 0)) 32 

v=1 

Since 
1 0 00 3 0 -1 

0 1 0 0 2 2 0 md1) 
0 011 0 15 -10 10 -5 
0 0 0 11 -10 5 5 20/ 

we can compute 4 R(w ( +2) v)(Z; r,s; 0, 0)12 by [5, Proposition 1.3]; for example, 

4( R(w(C+ ))(Z ) (O (?) (?1 = q(ZO ; (2 5)(0 )1 
Since 4b(zo; r, s; 0, 0)3 is an algebraic integer of k6 and since the square of the 
absolute value of a conjugate of 41(zo; r, s; 0, 0) over Q is of the form 
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for some r', s' e 122 and some r", s" e 1222, it follows that we can determine 

Nk6/Q (1(zo; r, s; 0, 0)3) with some luck by the method explained in the next sec- 
tion. As a result of computation, we have 

(2) Nk6/Q( ( 1) Zo ()= (?)())) 248 

and 

(3) N (( (Z)O () (?) ()) =2 

Since the order of 2 + 52 is 4, the ideal 20k is a prime ideal of Dk* Moreover, the 
ideal 20k splits in k3/k since -2 -1 (mod 3). Hence the decomposition group of 

20k with respect to k6/k is (('k /2 ) ), because 20k ramifies in k6/k. In view of 

(2) and (3), this shows that E3v and q 3 are units in k6 for all v e 2. Now, noting 

that =R(9(2+()2) =3 we have 

( 4R ((2+() ) (Zo; r, s; 0,0) (k) 
4DR(W(2+()V+2)(z0; r, s; 0,0)J 

(DR(Ww(i))R(w(2+()) )(Zo; r, s; O, O) 
<pR(W(L,i))R(w(2+()v)R(f (2+()2) (Zo ; r, s; O, O) 

bpR(w(2+()-) (Zo ; r, s; @, O) 
-D R (W (2 + (),,+ 2) (Zo;rr,,s; 0s);0 

which shows that ev and rqv are contained in k6. Hence ev and rqv are units in k6. 
It is clear that po, Pi and P2 are units in k6, because ,3, (5 E k6. 

Let T = (((+2)) e G(k6/k). Remember that a is the element of G(k/Q) defined 

by ( = (2. We extend a to k6 and keep the notation for simplicity. Then, as we 
explain in the next section, we see that the rank of the matrix 

(4) (log Iu91) 

is 19, where u runs over {60, -- ..., ) , *-, 0 , Po, Pi, P2} and g is of the form 
itTj (0 < i < 1, 0 < j < 9). This completes the proof of theorem. 

3. COMPUTATION 

In this section, we explain how we computed (2), (3) and the rank of (4). Since 
theta series converges rapidly, one can easily compute an approximate value of it 
with high precision. In our case, a rough estimate 

03(0, zo; r', st) - E e('t(x + r')zo(x + r') + t(x + r')S't) 
xC2 x EZ2 

X12 <n 

< 4(n + 1 -n exp(-2.87r/180)) exp(-2.8n7r/180) 
(1 - exp(-2.87r/180))2 
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was enough for computing the approximate value of I1(zo; r', s'; r", s")I with a 
precision of 200 digits. We computed the approximate values of 

(5) 

Nk /Q(4) ( Zo; (o), (o; (o) (o)) ) ~ N6Q)(zo ; r' ,s' r , 8/) 3) 

for all r', s' e 122 and r", s"t e 122, and found that 248 is the only possible integral 
value for (5). Hence we have (2). Similarly we have (3). 

Next we consider (4). The actions of a and r on pi are given by ( = =52, (3 = (3 

and (5T = 5, = (32. Namely, p1 = po and P2 = pO. Moreover, using r', s' e 122 

and r", s" e 122 for which the values of (5) are near 248, we found ten possible 
values of log IE' 1. All the values are derived from one by actions of r. So we may 
regard any of these as log Iegl by replacing a with UTt. Since -T1'T = T7 and 
ET = Ei+?, we calculate log eIET7 I from 

j?7-3 = 
j 

oo -1 i j 7i+ j 

Similarly we have ten possible values of log l7o 1. But this time, we could not specify 
the value of log lq' 1. We calculated the rank of (4) for all possible values of log Iq' I 
and verified that the rank is 19 for all cases. Hence we conclude that the rank of 
(4) is 19. 

A 64-bit work station DEC Alpha 500/333 needed eight hours for these compu- 
tations. 
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